

Numerical simulations of transitional flows using γ -SST model

Jiří Fürst

Dept. of Technical Mathematics,
Faculty of Mechanical Engineering,
Czech Technical University in Prague
Czech Republic

Introduction

Turbomachinery flows:

- High speed, compressible internal flows
- Transonic regimes, shock waves, ...
- Rotating system, multiple frames of reference,
- Specific boundary conditions (stator-rotor interfaces, non-reflecting boco, ...)
- Complicated physics (EOS, non-equilibrium condensation of steam, ...)
- Surface roughness

Typical flow regimes:

- Ma = 0.5 2
- Re ~ 10⁶
- Tu = 2 10%
- Bypass transition

Mean flow solver

OpenFOAM package

- An open source framework for finite-volume method
- Contains several ready made solvers for incompressible flows, heat transfer, ...
- OpenFOAM solvers for high-speed compressible flows:
 - * rhoSimpleFoam segregated, very "fragile", sensitive to under-relaxation, ...
 - * rhoCentralFoam coupled, explicit time stepping (not suitable for Low-Re approach)

In-house solver [1]

- Built on top of OpenFOAM package
- standard FVM with convective fluxes evaluated using approximate Riemann solvers (HLLC with low-Mach correction [2])
- Second order in space using piece-wise linear reconstructions with limiters
- Implicit time stepping with matrix-free LU-SGS method
- Weak coupling with transition and turbulence model:
 - 1. Update mean flow variables (ρ, U, E) using old values of turbulence variables $(k, \omega, \gamma, ...)$
 - 2. Update turbulence model using new mean flow variables (with under-relaxation)

Solver available at: https://github.com/furstj/myFoam

^[1] FÜRST, Jiří. Development of a coupled matrix-free LU-SGS solver for turbulent compressible flows. Computers & Fluids. August 2018. Vol. 172, p. 332–339. DOI 10.1016/j.compfluid.2018.04.020.

^[2] XIE, Wenjia, ZHANG, Ran, LAI, Jianqi and LI, Hua. An accurate and robust HLLC-type Riemann solver for the compressible Euler system at various Mach numbers. International Journal for Numerical Methods in Fluids. 2019. DOI 10.1002/fld.4704.

Transition and turbulence model

γ -SST model [3]

- Local correlation based model, similar to Langtry's & Menter's γ -Re $_{\theta}$ model with Re $_{\theta}$ equation replaced by an algebraic relation
- γ equation is coupled to SST model with P_k calculated using Kato-Launder modification
- Contains additional source term for transition at low Tu and for transition in separated flows [3]
- Missing: reliable cross-flow transition, compressibility effects, ...

k-kL-ω model [4]

- Three-equation laminar kinetic energy model
- Suitable for bypass and natural transition
- Missing: separation induced transition, cross-flow transition, compressibility effects, ...

Both models available as an additional library for OpenFOAM at: https://github.com/furstj/myTurbulenceModels

^[3] MENTER, Florian R., SMIRNOV, Pavel E., LIU, Tao and AVANCHA, Ravikanth. A one-equation local correlation-based transition model. Flow, Turbulence and Combustion. 5 December 2015. Vol. 95, no. 4, p. 583–619. DOI 10.1007/s10494-015-9622-4

^[4] LOPEZ, Maurin and KEITH WALTERS, D. A Recommended Correction to the $k_T - k_L - \omega$ Transition-Sensitive Eddy-Viscosity Model. Journal of Fluids Engineering [online]. 7 December 2016. Vol. 139, no. 2, p. 024501. DOI 10.1115/1.4034875.

Results: Flat plate flows

Case 1A

Computation:

- Tu = 5.86% (at inlet)
- $\mu_t/\mu = 11.9$

Experiment (ERCOFTAC)

• Tu = 3.3% (at LE)

Mesh	# cells	y ⁺
Tiny	1 056	1.50
Coarse	4 224	0.68
Medium	16 896	0.32
Fine	67 584	0.16
eXtra f.	270 336	0.08

Results: Flat plate flows

Case 1A, custom mesh & BC

Mesh:

- 66 675 cells,
- $y^+ \sim 0.2$,
- similar to mesh F

Incompressible fluid

SIMPLE algorithm

Tu = 3.7%
$$v_t/v = 12.3$$
 (for γ -SST)

Results: Flat plate flows

Case 1B, custom mesh & BC

Mesh:

- 66 675 cells,
- $y^+ \sim 0.2$,
- similar to mesh F

Incompressible fluid

SIMPLE algorithm

Tu = 6.6 %
$$v_t/v = 100 \text{ (for } \gamma\text{-SST)}$$

Results: NLF(1)-0416

Data for Tu=0.15%: submitted TWS

Here: data for

- Re = 4 000 000
- M = 0.1
- Tu = 0.11%
- $\omega_{\infty} = 5 \text{ U / chord}$

Mesh:

- 67 584 cells
- $y^+ \sim 0.2$

Comparison with:

- XFoil (n = 7.8)
- Experimental data [5]

[5] Somers D.: Design and experimental results for a natural laminar flow airfoil for general aviation applications, NASA-TP-1861, 1981

Results: NLF(1)-0416

Results: Ellipsoid

Case 3, AoA = 10°

without CF correlation

with CF correlation (C1)

Results: Case 4

 $AoA = 1.98^{\circ}$

- Unstructured mesh (Series A)
- gamma-SST model
- No CF correlation
- No sustaining term

Meshes:

8 - 7 mil. elems

12 - 20 mil. elems

16 - 46 mil. elems

Mesh	Cl	Cd
8	0.3826	0.0234
12	0.3859	0.0220
16	0.3890	0.0215

Conclusion

Results obtained with γ-SST model

- Case 1 & 2 quite good results consistent with experiment and other models
- Case 3 (ellipsoid) very bad results due to missing CF correlation
- The γ-SST model needs improvements for
 - cross-flow transition (C1 is valid only for wings)
 - compressibility, shock-wave BL interaction,
 - * transition due to distributed roughness (some work already done for γ -Re $_{\theta}$ by Dassler et al. or Langel et al.)

Acknowledgements:

Authors acknowledge support from the Center of Advanced Applied Sciences CZ.02.1.01/0.0/0.0/16_019/0000778.

Computational resources were supplied by the project "e-Infrastruktura CZ" (e-INFRA LM2018140) provided within the program Projects of Large Research, Development and Innovations Infrastructures.